
Presented By
Dr. Khaled Refaat, MD, FEgSC

Case study

- 26-year old male
- Complains of chest tightness
- Brother died at age of 28 year due to MI and his sister died at the age of 29 soon after her second delivery
- Lipogram: LDL-C: 430 mg/dl; HDL: 40 mg/dl; TG = 287 mg/dl

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Under diagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management

Genetics

Genetics

3 most common genes:

- LDLR (> 1700 mutations): 95%

- apoB: 4-5%

- PCSK9: 1%

Autosomal dominant

An older Perspectives....

Clinical characteristic	HoFH	HeFH	
Untreated LDL-C (mg/dL)	Generally >465 mg/dL ²	Average >220 mg/dL	
Treated LDL-C	>300 mg/dL after max tolerated drug therapy ³	Mean 135 +/- 38 mg/dL after treatment with high dose statins	
Cutaneous features	Tendon xanthomas Xanthelasma Tuberous xanthomas Planar xanthomas	Tendon xanthomas Xanthelasma	
Corneal arcus	Possible before age 20	Common after age 40	
Symptomatic Atherosclerosis	Within 2nd decade	Within 4th-5th decade	

Metabolic abnormalities

• LDL-C: 个个个

• Lp(a): 个

• TG: ↑↔

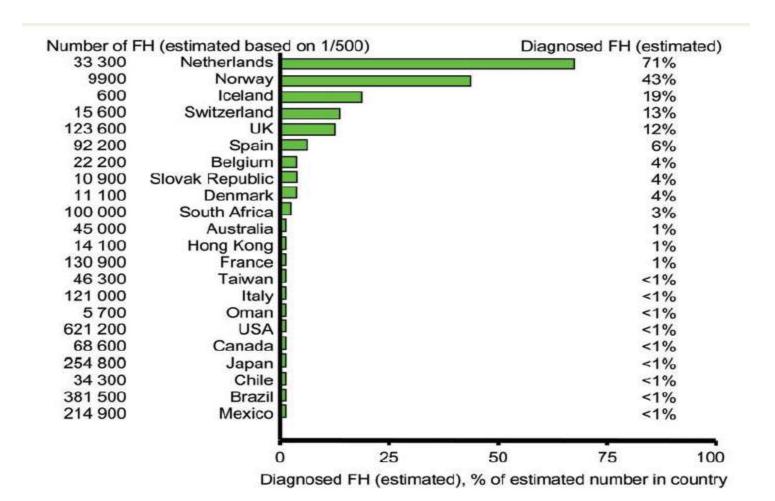
• HDL-C: **↓**

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Under diagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management

Prevalence

	Hetero FH	Homo FH
Old data	1/500	1/ million

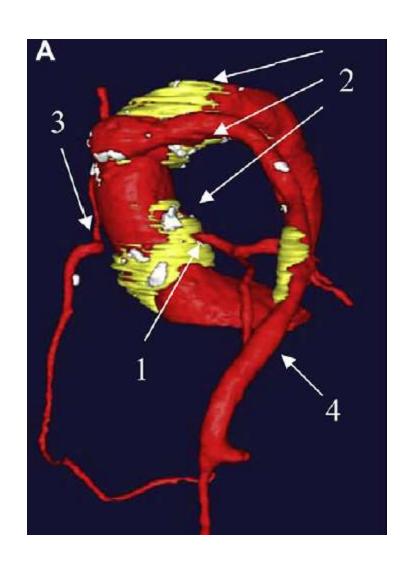
Br Med J 1980;281:633e6 Arteriosclerosis 1989;9:211e6 Mol Genet Metab 2011;102:181e8


Prevalence

	Hetero FH	Homo FH
Old data	1/500	1/ million
New data	1/200-250	1 / 160-300 x 10 ³

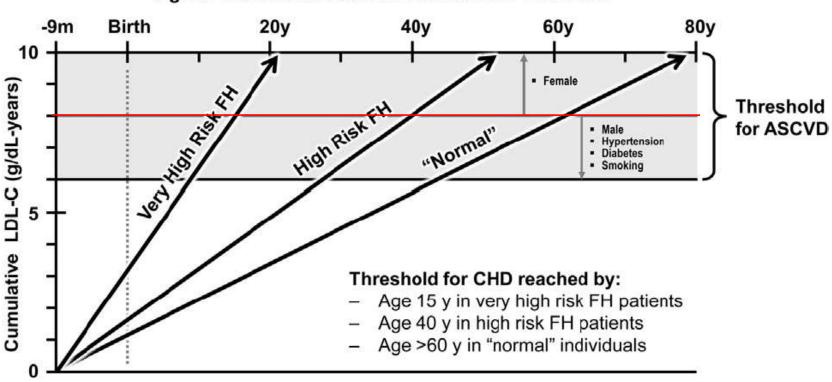
Br Med J 1980;281:633e6 Arteriosclerosis 1989;9:211e6 Mol Genet Metab 2011;102:181e8

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Under diagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management


Underdiagnosed

European Heart Journal (2013) 34, 3478-3490

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Underdiagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management


Pathology

Life time risk Time is plaque

Age in Years When Patients Meet ASCVD Threshold

Hetero: ASCVD

20 fold increased risk of ASCVD

50% of men have ASCVD by age of 50

30% of women have ASCVD by age of 60

- Among all MIs:
 - Before age of 45: 20% have FH
 - Before age of 60: 2-5% have FH

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Underdiagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management

2016 ESC/EAS Guidelines for the Management of Dyslipidaemias

- Briefing on etiology / genetics
- Changing prevalence
- Underdiagnosis
- Increased CV risk
- Diagnostic Criteria
- Family screening
- Management

2016 ESC/EAS Guidelines for the Management of Dyslipidaemias

Index cases should be identified when:

- plasma cholesterol ≥8 mmol/L (310 mg/dL) in an adult or adult family member (or >95th percentile by age and gender for country),
- premature CHD in the subject or a family member,
- tendon xanthomas in the subject or a family member or
- sudden premature cardiac death in a family member

1). FH

2). Clinical History

3). Exam

4). LDL-C

5). DNA

A 'definite' FH diagnosis requires >8 points

A 'probable' FH diagnosis requires 6-8 points

A 'possible' FH diagnosis requires 3-5 points

Exclude 2^{ry} causes of hypercholesterolemia

1). FH

2). Clinical History

3). Exam

4). LDL-C

5). DNA

Criteria Points

First-degree relative with known premature (men: <55 years; women: <60 years) coronary or vascular disease, or

First-degree relative with known LDL-C above the 95th percentile

First-degree relative with tendinous xanthomata and/or arcus cornealis, or

children <18 years of age with LDL-C above the 95th 2 percentile (see 9.1.2.3)

1). FH

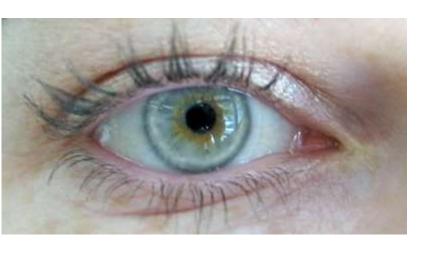
2). Clinical History

3). Exam

4). LDL-C

5). DNA

Criteria Points

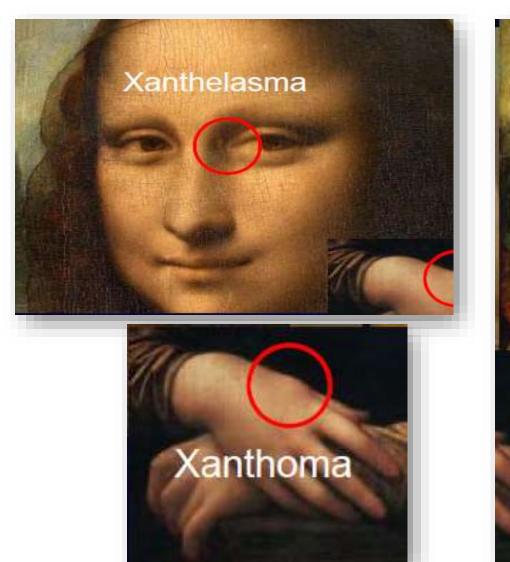

Patient with premature (men: <55 years; women: <60 years) 2 coronary artery disease

Patient with premature (men: <55 years; women: <60 years)

cerebral or peripheral vascular disease

1). FH 2). Clinical History 3). Exam 4). LDL-C 5). DNA

Criteria	Points
Tendinous xanthomata	6
Arcus cornealis before age 45 years	4



Did Mona Lisa have FH?

Curr Cardiol Rev. 2008 Feb; 4(1): 60-62.

1). FH

2). Clinical History

3). Exam

4). LDL-C

5). DNA

Criteria	Points
LDL-C \geq 8.5 mmol/L (325 mg/dL)	8
LDL-C 6.5-8.4 mmol/L (251-325 mg/dL)	5
LDL-C 5.0-6.4 mmol/L (191-250 mg/dL)	3
LDL-C 4.0-4.9 mmol/L (155-190 mg/dL)	1

1). FH

2). Clinical History

3). Exam

4). LDL-C

5). DNA

Criteria	Points
----------	--------

Functional mutation in the LDLR, apoB or PCSK9 gene

Genetic testing: when and why?

Table 22 Recommendations for the detection and treatment of patients with heterozygous familial hypercholesterolaemia

Recommendations	Class a	Level ^b
Diagnosis is recommended to be confirmed with clinical criteria and, when available, with DNA analysis.	Ĺ	C

Genetic testing: when and why?

Borderline cases (eg, score >5)

Cascade screening in family members

DD

- Polygenic hypercholesterolemia
- Familial combined hyperlipidemia
- Severe forms of secondary hypercholesterolemia (hypothyroidism, cholestasis)
- Type 3 hyperlipoproteinemia

Risk Stratification

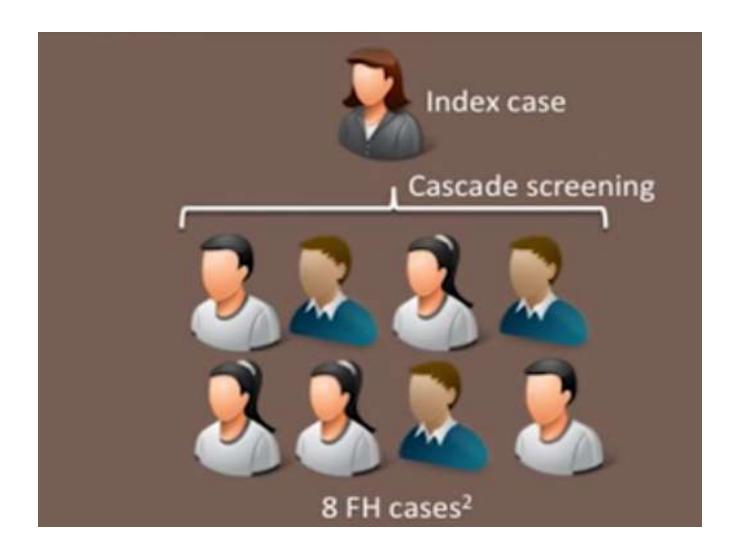
FH are high / very high risk patients

 No need to use cardiovascular risk calculators (eg, the European SCORE or the US Framingham Risk Score)

> NICE, 2008 National Lipid Association Expert Panel, 2011

HoFH: screening for subclinical atherosclerosis

Aim: to monitor progression


- TTE (annually)
- CCTA (≤ 5 years)
- Stress test (±)
- Coronary catheter

- Monogenic disorder (Briefing on genetics).
- Changing prevalence.
- Underdiagnosis.
- Increased lifetime CV risk.
- Diagnostic criteria (clinical / genetic).
- Family screening.
- Current management.

Cascade Screening

Family cascade screening is recommended to be performed when an index case of FH is diagnosed.

Cascade Screening

- Monogenic disorder (Briefing on genetics)
- Changing prevalence
- Underdiagnosis
- Increased lifetime CV risk
- Diagnostic criteria (clinical / genetic)
- Family screening
- Current management

Life Style Modification

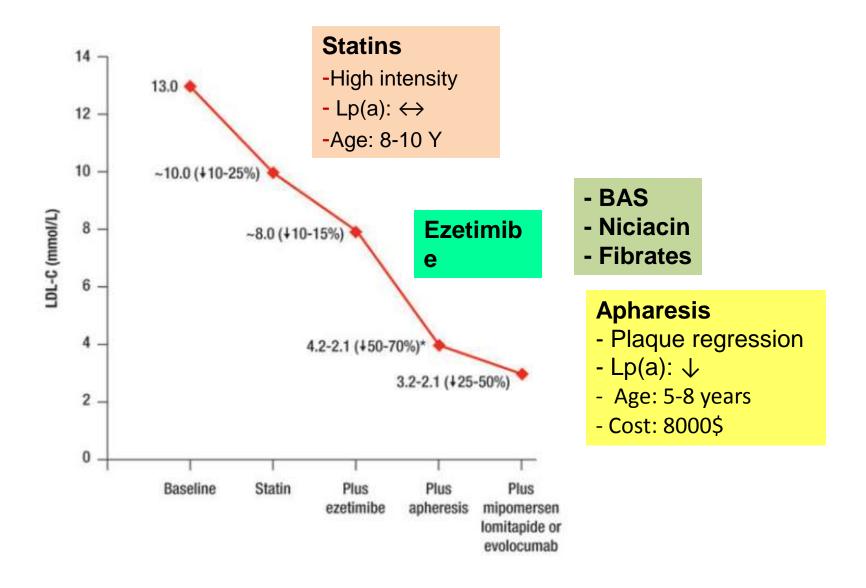
- Heart-healthy diet
- Exercise
- Risk factor modification: smoking ,obesity HTN, DM
- Aspirin

No RCT

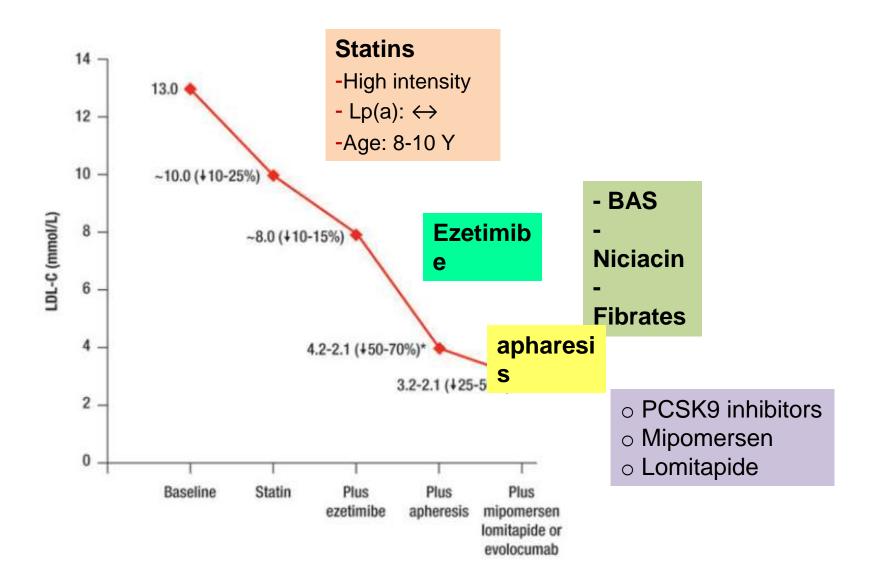
As early as possible 8-10 y (time is plaque)

Lipid specialist

LDL-C target:


Adults: < 100 mg/dl Children: < 135 mg/dl

ASCVD: < 70 mg/dl


If difficult: > 50% reduction

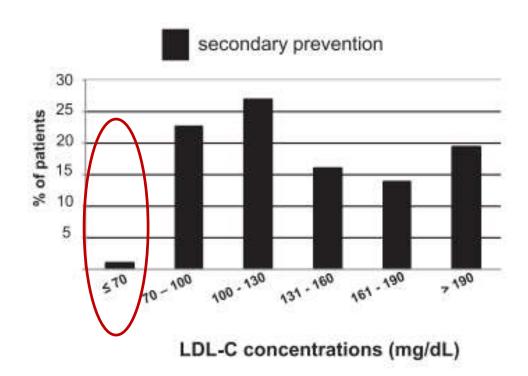
- ASCVD risk factor: < 70 mg/dl (ACC,2016)
 - HTN
 - DM
 - Smoking
 - CKD

- 个 Lp(a)
- 个CRP
- Subclinical atherosclerosis

Clin Res Cardiol Suppl 2012;7:7–14

Clin Res Cardiol Suppl 2012;7:7– 14

Evaluation of cholesterol lowering treatment of patients with familial hypercholesterolemia: A large cross-sectional study in The Netherlands


1,249 patients with heFH (96% on statins)

• Goal of LDL –C < 97.5 mg/dl: 21%

Goal of >50% of LDL reduction: 47%

Improvement in LDL-cholesterol levels of patients with familial hypercholesterolemia: Can we do better? Analysis of results obtained during the past two decades in 1669 French subjects

616 <u>HeFH</u> patients treated after 2005

PCSK9 i: Effect on lipogram

	% Δ	
LDL-C	↓ 40's-70's	
Lp(a)	↓20-30%	
HDL	个 5-10%	
VLDL	↓ 5-20	

PCSK9i: Indications

High risk patients:

- FH
- High CV risk

- ✓ Failed to achieve LDL-C target
- ✓ Adjunct to diet + maxim tolerated statins

Statin intolerance

PCSK9 inhibitors

Table 22 Recommendations for the detection and treatment of patients with heterozygous familial hypercholesterolaemia

Recommendations	Class a	Level b
Treatment with a PCSK9 antibody should be considered in FH patients with CVD or with other factors putting them at very high-risk for CHD, such as other CV risk factors, family history, high Lp(a) or statin intolerance.	lla	С

LDL apheresis

FDA:

Group A: homozygotes FH + LDL-C > 500 mg/dl

Group B: heterozygotes FH + LDL-C ≥ 300 mg/dl

Group C: heterozygotes FH + LDL-C ≥ 200 mg/dl + CAD

- Early initiation
- LDL-C reduction: 55-70%
- Plaque regression
- Frequency: every 1-2 week
- Limited by: cost; availability; SE

Remaining options

Liver transplantation

- Partial ileal bypass
- Portocaval shunting

Gene Therapy

Pregnancy

FH Mother

- Preconception cardiological evaluation
- Discontinue all therapy; except BAS
- LDL pharesis is safe
- Monitor for LDL elevation

Child

- 50% risk of FH
- LDL-C level at age of 2-5 years

Conclusions

Changing Face:

- FH is more frequent than we thought
- Marked genetic heterogeneity and phenotypic variability
- Overlapping spectra between: homoFH; heteroFH; severe polygenic HC

Conclusions

In Practice:

- Pharmacotherapy: early, aggressive
- High intensity statins + Ezetimibe
- Novel drugs (eg, PCSK9 inhibitors) are considered in difficult to treat / high risk patients
- Cascade screening: very effective (1:8)

Thank You...